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Lecture 4.  

The Java Collections Framework 

Chapters 6.3-6.4 



Last Updated:  1/14/10 12:36 PM 
CSE 2011 

Prof. J. Elder 
- 2 - 

The Java Collections Framework  

• We will consider the Java Collections Framework as a 

good example of how apply the principles of object-

oriented software engineering (see Lecture 1) to the 
design of classical data structures. 
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The Java Collections Framework 

• A coupled set of classes and interfaces that implement 

commonly reusable collection data structures.  

• Designed and developed primarily by Joshua Bloch 

(currently Chief Java Architect at Google). 



Last Updated:  1/14/10 12:36 PM 
CSE 2011 

Prof. J. Elder 
- 4 - 

What is a Collection? 

• An object that groups multiple elements into a single 

unit. 

• Sometimes called a container. 
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What is a Collection Framework? 

• A unified architecture for representing and manipulating 

collections.  

• Includes:  

– Interfaces: A hierarchy of ADTs.  

– Implementations 

– Algorithms: The methods that perform useful computations, 

such as searching and sorting, on objects that implement 

collection interfaces.  

• These algorithms are polymorphic: that is, the same method can be 

used on many different implementations of the appropriate 

collection interface.  
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History 

• Apart from the Java Collections Framework, the best-

known examples of collections frameworks are the C++ 

Standard Template Library (STL) and Smalltalk's 
collection hierarchy.  
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Benefits 

• Reduces programming effort: By providing useful data structures 

and algorithms, the Collections Framework frees you to concentrate 

on the important parts of your program rather than on the low-level 

"plumbing" required to make it work.  

• Increases program speed and quality: Provides high-

performance, high-quality implementations of useful data structures 

and algorithms.  

• Allows interoperability among unrelated APIs: APIs can 

interoperate seamlessly, even though they were written 

independently.  

• Reduces effort to learn and to use new APIs 

• Reduces effort to design new APIs 

• Fosters software reuse: New data structures that conform to the 

standard collection interfaces are by nature reusable.  
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Core Collection Interfaces 
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Traversing Collections in Java 

• There are two ways to traverse collections:  

– using Iterators.  

– with the (enhanced) for-each construct  
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Iterators 

• An Iterator is an object that enables you to traverse 

through a collection and to remove elements from the 

collection selectively, if desired.  

• You get an Iterator for a collection by calling its iterator 

method. 

• Suppose collection is an instance of a Collection.  

Then to print out each element on a separate line:  

 Iterator<E> it = collection.iterator(); 

 while (it.hasNext()) 

  System.out.println(it.next()); 
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Iterators 

Iterator interface:   

 public interface Iterator<E> {  

  boolean hasNext();  

  E next();  

  void remove(); //optional  

}  

• hasNext() returns true if the iteration has more elements 

• next() returns the next element in the iteration.   

• remove() removes the last element that was returned by next.  

– remove may be called only once per call to next  

– otherwise throws an exception. 

– Iterator.remove is the only safe way to modify a collection during iteration  
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Implementing Iterators 

• Could make a copy of the collection. 

– Good:  could make copy private – no other objects could change 

it from under you. 

– Bad:  construction is O(n). 

• Could use the collection itself (the typical choice). 

– Good:  construction, hasNext and next are all O(1). 

– Bad: if another object makes a structural change to the 

collection, the results are unspecified. 
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The Enhanced For-Each Statement 

• Suppose collection is an instance of a Collection.  

Then 

 for (Object o : collection)  

  System.out.println(o);  

 prints each element of the collection on a separate line. 

• This code is just shorthand:  it compiles to use 

o.iterator().   
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The Generality of Iterators 

• Note that iterators are general in that they apply to any 

collection. 

– Could represent a sequence, set or map. 

– Could be implemented using arrays or linked lists. 
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ListIterators 

• A ListIterator extends Iterator to treat the collection as a list, 

allowing  

– access to the integer position (index) of elements 

– forward and backward traversal 

– modification and insertion of elements. 

• This is achieved through interfaces for the additional methods: 

– hasPrevious() 

– previous() 

– nextIndex() 

– previousIndex() 

– set() 

– add(e) 

Iterator 

ListIterator 
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The Iterable Interface 

• Allows an Iterator to be associated with an object. 

• The iterator allows an existing data structure to be 

stepped through sequentially, using the following 

methods: 

– hasNext:  does the object have any elements after the current 

position? 

– next: get the next element 

– remove:  removes from the sequence the last element returned 

by next 
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The Java Collections Framework (Ordered Data Types)  
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The Collection Interface 

• Allows data to be modeled as a collection of objects.  In addition to 

the Iterator interface, provides interfaces for:  

– Creating the data structure 

• add(e) 

• addAll(c) 

– Querying the data structure 

• size() 

• isEmpty() 

• contains(e) 

• containsAll(c) 

• toArray() 

• equals(e) 

– Modifying the data structure 

• remove(e) 

• removeAll(c) 

• retainAll(c) 

• clear() 
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The Abstract Collection Class 

• Skeletal implementation of the Collection interface. 

• For unmodifiable collection, programmer needs to implement: 

– iterator (including hasNext and next methods) 

– size 

• For modifiable collection, need to also implement: 

– remove method for iterator 

– add 
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The List Interface 

• Extends the Collections interface to model the data as an ordered 

sequence of elements, indexed by an integer index (position).   

• Provides interface for creation of a ListIterator 

• Also adds interfaces for: 

– Creating the data structure 

• add(e) 

• add(i, e) 

– Querying the data structure 

• get(i) 

• indexOf(e) 

• lastIndexOf 

• subList(i1, i2) 

– Modifying the data structure 

• set(i) 

• remove(e) 

• remove(i) 
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The Abstract List Class 

• Skeletal implementation of the List interface. 

• For unmodifiable list, programmer needs to implement methods: 

– get  

– size 

• For modifiable list, need to implement 

– set 

• For variable-size modifiable list, need to implement 

– add 

– remove 
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The ArrayList Class 

• Random access data store implementation of the List interface 

• Uses an array for storage. 

• Supports automatic array-resizing 

• Adds methods 

– trimToSize() 

– ensureCapacity(n) 

– clone() 

– removeRange(i1, i2) 

– RangeCheck(i) 

– writeObject(s) 

– readObject(s) 
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The Vector Class 

• Similar to Array List. 

• But all methods of Vector are synchronized. 

– Guarantees that at most one thread can execute the method at a time. 

– Other threads are blocked, and must wait until the current thread completes. 
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The Stack Class 

• Represents a last-in, first-out (LIFO) stack of objects. 

• Adds 5 methods: 

– push() 

– pop() 

– peek() 

– empty() 

– search(e) 
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The Abstract Sequential List Class 

• Skeletal implementation of the List interface. 

• Assumes a sequential access data store (e.g., linked list) 

• Programmer needs to implement methods 

– listIterator() 

– size() 

• For unmodifiable list, programmer needs to implement list iterator’s methods: 

– hasNext() 

– next() 

– hasPrevious() 

– previous() 

– nextIndex() 

– previousIndex() 

• For modifiable list, need to also implement list iterator’s 

– set 

• For variable-size modifiable list, need to implement list iterator’s 

– add 

– remove 
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The Queue Interface 

• Designed for holding elements prior to processing 

• Typically first-in first-out (FIFO) 

• Provides additional insertion, extraction and inspection operations. 

• Extends the Collection interface to provide interfaces for: 

– offer 

– poll 

– remove 

– peek 

– element 
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The LinkedList Class 

• Implements the List and Queue interfaces. 

• Uses a doubly-linked list data structure. 

• Extends the List interface with additional methods: 

– getFirst 

– getLast 

– removeFirst 

– removeLast 

– addFirst(e) 

– addLast(e) 

• These make it easier to use the LinkedList class to create 

stacks, queues and dequeues (dequeues). 

• Not synchronized. 
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The LinkedList Class 

• LinkedList objects are not synchronized. 

• However, the LinkedList iterator is fail-fast: if the list is structurally 

modified at any time after the iterator is created, in any way except 

through the Iterator's own remove or add methods, the iterator will 

throw a ConcurrentModificationException.   

• Thus the iterator fails quickly and cleanly, rather than risking 

arbitrary, non-deterministic behavior at an undetermined time in the 

future. 
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The Abstract Queue Class 

• Skeletal implementation of the Queue interface. 

• Provides implementations for 

– add(e) 

– remove() 

– element 

– clear 

– addAll(c) 
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The Priority Queue Class 

• Based on priority heap 

• Provides an iterator 

• This will be our next topic! 


